Copied to
clipboard

?

G = C22×Dic12order 192 = 26·3

Direct product of C22 and Dic12

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×Dic12, C24.61C23, C12.57C24, C23.67D12, Dic6.21C23, C61(C2×Q16), (C2×C6)⋊6Q16, C31(C22×Q16), (C2×C8).310D6, C4.47(C2×D12), C12.292(C2×D4), (C2×C12).392D4, (C2×C4).102D12, C8.52(C22×S3), C4.54(S3×C23), (C22×C8).12S3, C6.24(C22×D4), (C22×C24).16C2, C22.72(C2×D12), (C22×C6).147D4, C2.26(C22×D12), (C22×C4).461D6, (C2×C12).788C23, (C2×C24).382C22, (C22×Dic6).9C2, (C22×C12).527C22, (C2×Dic6).258C22, (C2×C6).180(C2×D4), (C2×C4).738(C22×S3), SmallGroup(192,1301)

Series: Derived Chief Lower central Upper central

C1C12 — C22×Dic12
C1C3C6C12Dic6C2×Dic6C22×Dic6 — C22×Dic12
C3C6C12 — C22×Dic12

Subgroups: 600 in 258 conjugacy classes, 127 normal (13 characteristic)
C1, C2, C2 [×6], C3, C4, C4 [×3], C4 [×8], C22 [×7], C6, C6 [×6], C8 [×4], C2×C4 [×6], C2×C4 [×12], Q8 [×20], C23, Dic3 [×8], C12, C12 [×3], C2×C6 [×7], C2×C8 [×6], Q16 [×16], C22×C4, C22×C4 [×2], C2×Q8 [×18], C24 [×4], Dic6 [×8], Dic6 [×12], C2×Dic3 [×12], C2×C12 [×6], C22×C6, C22×C8, C2×Q16 [×12], C22×Q8 [×2], Dic12 [×16], C2×C24 [×6], C2×Dic6 [×12], C2×Dic6 [×6], C22×Dic3 [×2], C22×C12, C22×Q16, C2×Dic12 [×12], C22×C24, C22×Dic6 [×2], C22×Dic12

Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], Q16 [×4], C2×D4 [×6], C24, D12 [×4], C22×S3 [×7], C2×Q16 [×6], C22×D4, Dic12 [×4], C2×D12 [×6], S3×C23, C22×Q16, C2×Dic12 [×6], C22×D12, C22×Dic12

Generators and relations
 G = < a,b,c,d | a2=b2=c24=1, d2=c12, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Smallest permutation representation
Regular action on 192 points
Generators in S192
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 25)(15 26)(16 27)(17 28)(18 29)(19 30)(20 31)(21 32)(22 33)(23 34)(24 35)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)(61 97)(62 98)(63 99)(64 100)(65 101)(66 102)(67 103)(68 104)(69 105)(70 106)(71 107)(72 108)(73 136)(74 137)(75 138)(76 139)(77 140)(78 141)(79 142)(80 143)(81 144)(82 121)(83 122)(84 123)(85 124)(86 125)(87 126)(88 127)(89 128)(90 129)(91 130)(92 131)(93 132)(94 133)(95 134)(96 135)(145 173)(146 174)(147 175)(148 176)(149 177)(150 178)(151 179)(152 180)(153 181)(154 182)(155 183)(156 184)(157 185)(158 186)(159 187)(160 188)(161 189)(162 190)(163 191)(164 192)(165 169)(166 170)(167 171)(168 172)
(1 170)(2 171)(3 172)(4 173)(5 174)(6 175)(7 176)(8 177)(9 178)(10 179)(11 180)(12 181)(13 182)(14 183)(15 184)(16 185)(17 186)(18 187)(19 188)(20 189)(21 190)(22 191)(23 192)(24 169)(25 155)(26 156)(27 157)(28 158)(29 159)(30 160)(31 161)(32 162)(33 163)(34 164)(35 165)(36 166)(37 167)(38 168)(39 145)(40 146)(41 147)(42 148)(43 149)(44 150)(45 151)(46 152)(47 153)(48 154)(49 85)(50 86)(51 87)(52 88)(53 89)(54 90)(55 91)(56 92)(57 93)(58 94)(59 95)(60 96)(61 73)(62 74)(63 75)(64 76)(65 77)(66 78)(67 79)(68 80)(69 81)(70 82)(71 83)(72 84)(97 136)(98 137)(99 138)(100 139)(101 140)(102 141)(103 142)(104 143)(105 144)(106 121)(107 122)(108 123)(109 124)(110 125)(111 126)(112 127)(113 128)(114 129)(115 130)(116 131)(117 132)(118 133)(119 134)(120 135)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192)
(1 71 13 59)(2 70 14 58)(3 69 15 57)(4 68 16 56)(5 67 17 55)(6 66 18 54)(7 65 19 53)(8 64 20 52)(9 63 21 51)(10 62 22 50)(11 61 23 49)(12 60 24 72)(25 118 37 106)(26 117 38 105)(27 116 39 104)(28 115 40 103)(29 114 41 102)(30 113 42 101)(31 112 43 100)(32 111 44 99)(33 110 45 98)(34 109 46 97)(35 108 47 120)(36 107 48 119)(73 192 85 180)(74 191 86 179)(75 190 87 178)(76 189 88 177)(77 188 89 176)(78 187 90 175)(79 186 91 174)(80 185 92 173)(81 184 93 172)(82 183 94 171)(83 182 95 170)(84 181 96 169)(121 155 133 167)(122 154 134 166)(123 153 135 165)(124 152 136 164)(125 151 137 163)(126 150 138 162)(127 149 139 161)(128 148 140 160)(129 147 141 159)(130 146 142 158)(131 145 143 157)(132 168 144 156)

G:=sub<Sym(192)| (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,97)(62,98)(63,99)(64,100)(65,101)(66,102)(67,103)(68,104)(69,105)(70,106)(71,107)(72,108)(73,136)(74,137)(75,138)(76,139)(77,140)(78,141)(79,142)(80,143)(81,144)(82,121)(83,122)(84,123)(85,124)(86,125)(87,126)(88,127)(89,128)(90,129)(91,130)(92,131)(93,132)(94,133)(95,134)(96,135)(145,173)(146,174)(147,175)(148,176)(149,177)(150,178)(151,179)(152,180)(153,181)(154,182)(155,183)(156,184)(157,185)(158,186)(159,187)(160,188)(161,189)(162,190)(163,191)(164,192)(165,169)(166,170)(167,171)(168,172), (1,170)(2,171)(3,172)(4,173)(5,174)(6,175)(7,176)(8,177)(9,178)(10,179)(11,180)(12,181)(13,182)(14,183)(15,184)(16,185)(17,186)(18,187)(19,188)(20,189)(21,190)(22,191)(23,192)(24,169)(25,155)(26,156)(27,157)(28,158)(29,159)(30,160)(31,161)(32,162)(33,163)(34,164)(35,165)(36,166)(37,167)(38,168)(39,145)(40,146)(41,147)(42,148)(43,149)(44,150)(45,151)(46,152)(47,153)(48,154)(49,85)(50,86)(51,87)(52,88)(53,89)(54,90)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(67,79)(68,80)(69,81)(70,82)(71,83)(72,84)(97,136)(98,137)(99,138)(100,139)(101,140)(102,141)(103,142)(104,143)(105,144)(106,121)(107,122)(108,123)(109,124)(110,125)(111,126)(112,127)(113,128)(114,129)(115,130)(116,131)(117,132)(118,133)(119,134)(120,135), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,71,13,59)(2,70,14,58)(3,69,15,57)(4,68,16,56)(5,67,17,55)(6,66,18,54)(7,65,19,53)(8,64,20,52)(9,63,21,51)(10,62,22,50)(11,61,23,49)(12,60,24,72)(25,118,37,106)(26,117,38,105)(27,116,39,104)(28,115,40,103)(29,114,41,102)(30,113,42,101)(31,112,43,100)(32,111,44,99)(33,110,45,98)(34,109,46,97)(35,108,47,120)(36,107,48,119)(73,192,85,180)(74,191,86,179)(75,190,87,178)(76,189,88,177)(77,188,89,176)(78,187,90,175)(79,186,91,174)(80,185,92,173)(81,184,93,172)(82,183,94,171)(83,182,95,170)(84,181,96,169)(121,155,133,167)(122,154,134,166)(123,153,135,165)(124,152,136,164)(125,151,137,163)(126,150,138,162)(127,149,139,161)(128,148,140,160)(129,147,141,159)(130,146,142,158)(131,145,143,157)(132,168,144,156)>;

G:=Group( (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,97)(62,98)(63,99)(64,100)(65,101)(66,102)(67,103)(68,104)(69,105)(70,106)(71,107)(72,108)(73,136)(74,137)(75,138)(76,139)(77,140)(78,141)(79,142)(80,143)(81,144)(82,121)(83,122)(84,123)(85,124)(86,125)(87,126)(88,127)(89,128)(90,129)(91,130)(92,131)(93,132)(94,133)(95,134)(96,135)(145,173)(146,174)(147,175)(148,176)(149,177)(150,178)(151,179)(152,180)(153,181)(154,182)(155,183)(156,184)(157,185)(158,186)(159,187)(160,188)(161,189)(162,190)(163,191)(164,192)(165,169)(166,170)(167,171)(168,172), (1,170)(2,171)(3,172)(4,173)(5,174)(6,175)(7,176)(8,177)(9,178)(10,179)(11,180)(12,181)(13,182)(14,183)(15,184)(16,185)(17,186)(18,187)(19,188)(20,189)(21,190)(22,191)(23,192)(24,169)(25,155)(26,156)(27,157)(28,158)(29,159)(30,160)(31,161)(32,162)(33,163)(34,164)(35,165)(36,166)(37,167)(38,168)(39,145)(40,146)(41,147)(42,148)(43,149)(44,150)(45,151)(46,152)(47,153)(48,154)(49,85)(50,86)(51,87)(52,88)(53,89)(54,90)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(67,79)(68,80)(69,81)(70,82)(71,83)(72,84)(97,136)(98,137)(99,138)(100,139)(101,140)(102,141)(103,142)(104,143)(105,144)(106,121)(107,122)(108,123)(109,124)(110,125)(111,126)(112,127)(113,128)(114,129)(115,130)(116,131)(117,132)(118,133)(119,134)(120,135), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,71,13,59)(2,70,14,58)(3,69,15,57)(4,68,16,56)(5,67,17,55)(6,66,18,54)(7,65,19,53)(8,64,20,52)(9,63,21,51)(10,62,22,50)(11,61,23,49)(12,60,24,72)(25,118,37,106)(26,117,38,105)(27,116,39,104)(28,115,40,103)(29,114,41,102)(30,113,42,101)(31,112,43,100)(32,111,44,99)(33,110,45,98)(34,109,46,97)(35,108,47,120)(36,107,48,119)(73,192,85,180)(74,191,86,179)(75,190,87,178)(76,189,88,177)(77,188,89,176)(78,187,90,175)(79,186,91,174)(80,185,92,173)(81,184,93,172)(82,183,94,171)(83,182,95,170)(84,181,96,169)(121,155,133,167)(122,154,134,166)(123,153,135,165)(124,152,136,164)(125,151,137,163)(126,150,138,162)(127,149,139,161)(128,148,140,160)(129,147,141,159)(130,146,142,158)(131,145,143,157)(132,168,144,156) );

G=PermutationGroup([(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,25),(15,26),(16,27),(17,28),(18,29),(19,30),(20,31),(21,32),(22,33),(23,34),(24,35),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120),(61,97),(62,98),(63,99),(64,100),(65,101),(66,102),(67,103),(68,104),(69,105),(70,106),(71,107),(72,108),(73,136),(74,137),(75,138),(76,139),(77,140),(78,141),(79,142),(80,143),(81,144),(82,121),(83,122),(84,123),(85,124),(86,125),(87,126),(88,127),(89,128),(90,129),(91,130),(92,131),(93,132),(94,133),(95,134),(96,135),(145,173),(146,174),(147,175),(148,176),(149,177),(150,178),(151,179),(152,180),(153,181),(154,182),(155,183),(156,184),(157,185),(158,186),(159,187),(160,188),(161,189),(162,190),(163,191),(164,192),(165,169),(166,170),(167,171),(168,172)], [(1,170),(2,171),(3,172),(4,173),(5,174),(6,175),(7,176),(8,177),(9,178),(10,179),(11,180),(12,181),(13,182),(14,183),(15,184),(16,185),(17,186),(18,187),(19,188),(20,189),(21,190),(22,191),(23,192),(24,169),(25,155),(26,156),(27,157),(28,158),(29,159),(30,160),(31,161),(32,162),(33,163),(34,164),(35,165),(36,166),(37,167),(38,168),(39,145),(40,146),(41,147),(42,148),(43,149),(44,150),(45,151),(46,152),(47,153),(48,154),(49,85),(50,86),(51,87),(52,88),(53,89),(54,90),(55,91),(56,92),(57,93),(58,94),(59,95),(60,96),(61,73),(62,74),(63,75),(64,76),(65,77),(66,78),(67,79),(68,80),(69,81),(70,82),(71,83),(72,84),(97,136),(98,137),(99,138),(100,139),(101,140),(102,141),(103,142),(104,143),(105,144),(106,121),(107,122),(108,123),(109,124),(110,125),(111,126),(112,127),(113,128),(114,129),(115,130),(116,131),(117,132),(118,133),(119,134),(120,135)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192)], [(1,71,13,59),(2,70,14,58),(3,69,15,57),(4,68,16,56),(5,67,17,55),(6,66,18,54),(7,65,19,53),(8,64,20,52),(9,63,21,51),(10,62,22,50),(11,61,23,49),(12,60,24,72),(25,118,37,106),(26,117,38,105),(27,116,39,104),(28,115,40,103),(29,114,41,102),(30,113,42,101),(31,112,43,100),(32,111,44,99),(33,110,45,98),(34,109,46,97),(35,108,47,120),(36,107,48,119),(73,192,85,180),(74,191,86,179),(75,190,87,178),(76,189,88,177),(77,188,89,176),(78,187,90,175),(79,186,91,174),(80,185,92,173),(81,184,93,172),(82,183,94,171),(83,182,95,170),(84,181,96,169),(121,155,133,167),(122,154,134,166),(123,153,135,165),(124,152,136,164),(125,151,137,163),(126,150,138,162),(127,149,139,161),(128,148,140,160),(129,147,141,159),(130,146,142,158),(131,145,143,157),(132,168,144,156)])

Matrix representation G ⊆ GL5(𝔽73)

10000
072000
007200
000720
000072
,
720000
072000
007200
000720
000072
,
720000
0165700
0161600
00077
0006614
,
10000
067600
06600
0005448
0002919

G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[72,0,0,0,0,0,16,16,0,0,0,57,16,0,0,0,0,0,7,66,0,0,0,7,14],[1,0,0,0,0,0,67,6,0,0,0,6,6,0,0,0,0,0,54,29,0,0,0,48,19] >;

60 conjugacy classes

class 1 2A···2G 3 4A4B4C4D4E···4L6A···6G8A···8H12A···12H24A···24P
order12···2344444···46···68···812···1224···24
size11···12222212···122···22···22···22···2

60 irreducible representations

dim1111222222222
type+++++++++-++-
imageC1C2C2C2S3D4D4D6D6Q16D12D12Dic12
kernelC22×Dic12C2×Dic12C22×C24C22×Dic6C22×C8C2×C12C22×C6C2×C8C22×C4C2×C6C2×C4C23C22
# reps112121316186216

In GAP, Magma, Sage, TeX

C_2^2\times Dic_{12}
% in TeX

G:=Group("C2^2xDic12");
// GroupNames label

G:=SmallGroup(192,1301);
// by ID

G=gap.SmallGroup(192,1301);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,675,192,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^24=1,d^2=c^12,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽